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1 Introduction 

The growth of the Schwarzian derivative of an analytic function is related to both 
injectivity and quasiconformal extension of the function. This connection was first 
discovered by Ahlfors and Weill lAW], who generalized an injectivity criterion of 
Nehari rN]. They proved that if f is analytic and locally injective in the unit disk 
and if for some t < 1 the Schwarzian derivative S f  satisfies 

(1.1) (l -Iz12) 2 IS f ( z ) l  < 2t  , 

then f is injective in the disk and has a K-quasiconformal extension to 
~7=117w{oo}, where K depends only on t. The Schwarzian is defined by 

' ( i "V  (1.2) S f  = \ y , I  - 2 \ f '  J " 

If2t  is replaced by 2 in (1.1) then one obtains Nehari's original injectivity criterion. 
Nehari's result started what is by now a considerable amount of work in this area, 
see, e.g. ILl .  

Each of the present authors has been interested in theorems of this type, 
expecially in generalizations to higher dimensions, lOS1,2, C1,2]. What  about 
one dimension? For  a smooth real valued function on an interval, the Schwarzian 
can again be defined by (1.2), but there is no question of proving an injectivity 
criterion since one must already assume that f '  4= 0 to define Sf. Remarkably, what 
does persist is the phenomenon of quasiconformal extension. We shall prove the 
following. 

* To Professor F. W. Gehring on his 65 'h birthday 
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Theorem 1. I f  f is a C 3 function on ( -  1, 1), f '  4 O, and if for some 0 < t < 1 one has 

(1.3) - 4 t  4t 
1 - t  <(1--x2)2Sf(x)N l + t  

l + t  
then f has a conformally natural K(t)= (~_t~3-quasiconformal extension to the 

plane and to space, preserving the upper half-plane and upper half-space, 
respectively. 

By conformally natural we mean in the sense of Douady and Earle [DE].  Let 
E 2 (f) and E3(f)  denote the extensions of f to two and three dimensions. If A is a 
M6bius transformation of IE preserving the real axis, or of H 3 preserving the 
vertical plane through the real axis, then the extensions have the property that 

(1.4) A o Ej(f)  = Ej(Ao f ) .  

We do not know how our extensions compare with those of Douady and Earle, 
who consider extensions of homeomorphisms of the circle. The extension Ez(f)  
agrees with the Ahlfors-Weill extension on the real axis. 

The restriction of E z ( f )  to the real axis gives an extension E x(f) of f to ~ which 
is the boundary value function of a quasiconformal mapping of the upper half- 
plane. We would thus say that f has a quasisymmetric extension to the real line 
(see [L]) were it not for the fact that E l ( f )  might not fix 0% as is assumed in the 

ax+b 
definition of quasisymmetry. However if A(x)= cx + d' a, b, c, d ~ IR is a M6bius 

transformation of the line then the invariance property of the Schwarzian, S(A o f )  
= S(f), and the conformal naturality of the extensions imply that at least some 
M6bius transformation of f has a quasisymmetric extension. In fact, one 
possibility is A o f where (A o f )" (0)=0 ,  as we shall see in Sect. 4. 

Of course the choice of the interval ( -  1, 1) is unimportant,  and though we have 
found it more convenient to work on the real line, one can formulate the theorem 
and its proof  for functions defined on an arc of the circle. The Schwarzian can be 
defined as before and if f is a smooth function on, say, the upper semicircle of 
[z[ = 1, then the equivalent formulation of (1.3)is 

4t 4t 
(1.5) - - - 1  - t  <2(1 -cos20)Sf(O)<_ - - 1  + t '  

calling the coordinate 0. One then has a quasiconformal extension to the disk and 
the ball. 

Our work is an application of the beautiful ideas and methods of Epstein 
[El ,  2]. Though an ingenious use of reflections in complete surfaces in hyperbolic 
3-space, he showed in a new and elegant way how to relate the Schwarzian to 
quasiconformal extensions. We follow his lead, but we generate the surfaces we use 
by rotating a curve in the hyperbolic plane, giving a surface of revolution in the 
upper half-space. The effect is to drop down one dimension and the trick, not so 
immediate, is to make Epstein's formulas applicable when, to begin with, one has 
estimates only along the generating curve. 

Finally, we point out that the image of the unit disk under the extension Ez( f )  
and the image of the unit ball under the extension E3(f)  give nice examples of 
quasidisks and domains quasiconformally equivalent to a ball, respectively. The 
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latter are sometimes harder to come by, and since the mappings we build o f f  really 
are quite explicit, we hope this may be of further interest. 

2 Support functions and quasiconformal reflections 

We will use the upper half-space IH 3 as a model for hyperbolic 3-space. There are 
two main facts at the center of Epstein's work. First, a complete, imbedded surface 
S in ~-I 3 whose principal curvatures kl, k2 in the hyperbolic metric are < 1 in 
absolute value has a Jordan curve 0S C ti2 as its boundary at infinity. (We may also 
assume that (?X is bounded). Second, the surface determines an orientation 
reversing quasiconformal reflection A" I~---,I[1 across (?2;. This reflection is easy to 
describe geometrically. Let O be the bounded component of 112\(722, so that s lies 
above ~2. The unit normal vector field to s say the exterior normal, determines at 
each point P c 2; a unique geodesic in l-I 3, normal to 2; at P, with one endpoint in ~2 
and one in ~\~2. The map A : IE~II2 pairs these endpoints, say ~ c ~2 to A(~) c II2\O. 

Proving that this works depends upon recovering 2; as the envelope of a family 
ofhorospheres. There is a particularly useful way of parametrizing the horospheres 
that brings to light a relation between the principal curvatures and the Beltrami 
coefficient of the reflection A. A horosphere H in ~-I 3 is determined by the point 
where it is tangent to (?~-I 3, which we refer to as its base, and by its horospheric 
radius 6. The latter is defined to be 

(2.1) ~= _+ inf d(P, (0, 0,1)) 
P E H  

where d(., .  ) denotes the hyperbolic distance in ~I a and Q is taken to be positive if 
(0, 0, 1) is outside of H and negative if it is inside, in the obvious sense. Now, quite 
generally, one can define a surface in N3 over a domain f2 C I12 as the envelope, in 
the usual sense of differential geometry, of a family of horospheres/-/(~, ~(~)) where 

e O is the base and Q(~) is the horospheric radius. Under appropriate hypotheses 
on ~ the envelope of such a family of horospheres will be a complete, imbedded 
surface s in N3 with bounds on the principal curvatures as described in the last 
paragraph. The function ~ is then called the support .function of the surface. 
Conversely, such a surface over a domain f2 is the envelope of the family of its 
tangent horospheres and so determines a support function Q on (2. 

The bounds on the principal curvatures of 2; and the quasiconformality of the 
reflection A across (?2; = (?f2 occur simultaneously, so to speak. For  if 

(2.2) ~p(~) = Q(~)- log(1 +1~12), ~cf2,  

then the Beltrami coefficient of the reflection A is computed to be 
11)~ - -  ( 1~ )  2 

(2.3) p - , 

and the bound 

(2.4) I~(C)I < 1 
turns out to be equivalent to the bound 

(2.5) max{lk~(P), Ik2(P)l} < 1 

on the principal curvatures. 
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3 Surfaces of revolution in ~"I 3 

We use the upper half-plane ~'I 2 a s  a model for the hyperbolic plane. We regard ~-I 2 
as isometrically imbedded in ~ 3  as a vertical half-plane; say 0U 2 is the real axis in 
C = 01H 3. Let F be a complete, immersed smooth curve in I n  2 with hyperbolic 
geodesic curvature k satisfying JkL < 1. Then F is actually imbedded [E2, p. 21] with 
(finite) asymptotic endpoints on 0~-I 2. Thinking of ~ I  2 % In 3 as above, let Z be the 
surface in D-I a obtained by rotating F about the real axis by 90 ~ in both directions. 
Then Z is a complete imbedded surface in ~I a. The longitudes of S are copies of the 
curve F, though they are not isometric to F in the hyperbolic metric. The latitudes 
are the orthogonal semicircles, which are geodesics in ~"I 3, 

has two principal directions and two corresponding principal curvatures 
kl ,  k 2 at each point. Recall that Xi, i=1 ,2  is a principal direction and ki the 
corresponding principal curvature if Vx, N=kiXi .  Here V is the Riemannian 
connection in ~-I a and N is the exterior unit normal to Z. Because the euclidean and 
hyperbolic metrics are conformal, the lines of curvature of Z are the same in both 
metrics, namely the latitudes and longitudes. This is straightforward to check 
using the formula for the change in the connection under a conformal change in the 
metric, see e.g. [OS1, Sect. 2]. Since the latitudes are geodesics in lH 3, the principal 
curvature along these curves, say kl, is identically zero. The principal curvature 
along the (vertical) generator curve F is its hyperbolic geodesic curvature in R-I 2. 
We shall need to know that the principal curvature k 2 along any longitude is no 
greater in absolute value than its value along F. We can then conclude that for any 
P~Z,  

max {Ikl(n)], Ik2(P)l} -Ik2(P)l < 1, 

making the results of the previous section applicable. 

Lemma 1. Let F' be a longitude, P' a point on F' and P the corresponding point on F 
on the latitude through P'. Then [k2(P')l < ]k(P)[. 

Proof Let 6(.) denote the euclidean distance from a point in ~-I 3 to 0K-I3; the 
hyperbolic metric in R-I 3 is then 6-1 .  (euc). Let k e denote the euclidean curvature of 
F, and hence also of F'. The principal curvature k2(P' ) at P' in the direction of F' is 
related to the euclidean curvature ke(P')by 

0 1 , 

see e.g. [OS1, Sect. 3]. Here ~ denotes the (euclidean) exterior normal derivative 
on Z. ugg 

When F ' =  F the principal curvature k 2 (P')= k(P). Next, the euclidean curva- 
ture ke(P') is constant along the latitude from P to P' and it is easy to check that 

On log (P') is also constant along the latitude. Since the vertical distance 6 

decreases from P to P' we have Ike(P')~ Ik(P)l as desired. In fact, the calculation 
actually gives the rather nice formula 

~(P') k2(P')= ~ k(P). 
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The surface 2: lies over a bounded, symmetric, Jordan domain f2 C C, 8 S  = 8f2, 
whose boundary consists of a copy of the curve F and its reflection in the real axis. 
As described in the previous section, we recover X as the envelope of the family of 
its tangent horospheres H((, Q(0), ( e f2, where e is the support function of S. Write 

= u + iv. Then because of the symmetry P(0 = Q(u, v) is even in v. For  each ~ e f2 we 
let T(0  (for tangent) denote the point on X when H(~, ~(()) is tangent to 2:. By using 
a M6bius transformation ofD-I 3 we can assume without loss of generality that 0 e t2 
and that T(0) =(0, 0, 1). 

The general relation given by Epstein between the Beltrami coefficient of the 
reflection A and the principal curvatures of the surface reduces here, in the case of a 
surface of revolution, to 

1 + [/t(()l 1 + Ik 2 (T(())I 
1 -I~(ff)l 1 --]k 2(z(O)l 

i.e., to 

(3.1) I/~(()1 = [k2 (T(())[. 

Hence by Lemma 1, I#l will be no greater on f2 than its value on the interval f2c~lR, 
under the generating curve F. Our goal is to compute g along this interval in terms 
of ~(u, 0) and its u-derivatives alone. 

Recall from the previous section that if 

(3.2) 

then 

~0(0= 0(0--  log(1 + I~[ 2) 

(3.3) /~= ~P;~- ~p~ 

Because ~ is even in v the only difficult term to compute is ~w(u, 0). This is an 
interesting calculation involving a mix of the hyperbolic and euclidean geometry of 
horospheres. We present it as a separate lemma. 

From the symmetry of X it is clear that the reflection A maps the real axis v = 0 
to itself and preserves the half-planes v > 0  and /)<0. Let R ( u ) =  8 9  for 
u ~ f2n~,.,  and for ~ ~ t2 let r({) denote the euclidean radius of the horosphere 
H((, ~(()). One finds that 

(3.4) 

We shall prove 

(1 +1r 
~(r =log \ 5 ~ / - / "  

Lemma 2. With the notat ion as above, 

~pw(u,0)= ~ r(u) 2 R~u) 2- , u~ t2c~F. .  

Proof. Recall we have assumed that X passes through (0, 0, 1) and that this is the 
point of tangency between X and H(0, 0(0)), [so 0(0) = 0]. The vertical semicircle, 
say /)2 § ~2 = 1, ~ > 0, is then a latitude of X and O(0,/)) = log(1 + v 2 ) -  log(1 - / )2) .  
Hence l p ( 0 , / ) ) = - l o g 0 + v / )  and ~p~(u, 0)= 2. Since r(0)= } and R(0)=oo the 
formula checks in this case. The origin is the only point with R = oo since A is 1 : 1. 
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Let A denote the origin, take B = (0, 6, 0), 16[ < 1, to be a variable point on the 
v-axis with C = (0, 1,0)E ~2. Let D = T(B), the point of tangency between Z and 
H(B, o(B)). Then 

( 2 6 1 - 6 2  ) 
(3.5) D =  0 , 1 + 6 2 ,  1 ~  " 

Finally, let E=(0,0,161), so that the hyperbolic distance from (0,0,1) to E is 
- logl6l .  

Now fix Uo =(Uo,0, 0) and choose a M6bius transformation of ~I 3 mapping 
H(A, ~(A)) to H(u o, 0(Uo) ) and preserving IH 2 Q~"I 3. Let B', C', D', and E' be the 
points corresponding to B, C, D, E under this map. The image of the segment AC is 
a circular arc (in •) from Uo through B' to C', orthogonal to the real axis and 
parametrized by 6. We will be able to compute the second derivative of~  along this 
arc at Uo. This derivative contains the term ~vv(Uo, 0) giving is what we want. Thus 
the essence of the proof is to parametrize at the origin and perturb by a M6bius 
transformation. 

T(A) 

E D 

T(Uo) B C 

Fig. l 

We need the coordinates for T(Uo), B' and D'. For  T(Uo), the point of tangency 
of Z and H(Uo, Q(Uo)), we find that T(Uo)=(to, O, so) where, 

2Ror ~ 2R~ro 
(3.6) to = U 0 -~- 2 2 '  SO = 2 2 '  Ro + ro Ro + ro 

writing ro = r(Uo), Ro = R(Uo). Since the hyperbolic distance between T(Uo) and E' 
is also - logl6 l  this allows us to find E '= ( l , 0 , b )  with 

2R o r~ 6 2 2Rg r o 161 
(3.7) a = u o +  R2o+r~62, b= R2+rg62. 
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The geodesic in IH 3 from B to E goes into a geodesic from B' to E' meeting ~ I  2 at E' 
at a right angle. Hence B'=(a, +b,0) with a and b as in (3.7). Finally we find that 
D ' =  T(B') has coordinates 

( 2~ 1-6z ) 
(3.8) o ' =  to, 1 + ~ 2 , ~ 2 s o  =(to, . , /~) 

where t o and s o are as in (3.6). 
The horosphere H(B', ~o(B')) is tangent to the surface 22 at D'. From (3.4) we relate 

the euclidean and horospheric radius r(B') and ~o(B') by 

(1 + IB'l 2 
(3.9) 0(B')= log \ 2 r ~  ] 

and hence for ~p, as defined by (3.2), we get 

(3.10) p(B') = - logr(B')-  log 2. 

B' moves along the circular arc UoC' parametrized by ~, so we consider r and t~ 
to be functions of o with o =  0, corresponding to B'=  Uo =(Uo,0, 0). Since, by 
symmetry, r , (0)=0 we have from (3.10) that 

1 1 
(3.11) ~a~(0)= r~)  r . . (0)= --  r,~(0). 

1" 0 

if D"= [ 1--+-~2,2as~ ~t Next, [to, 0 is the projection of D' onto the plane and h is the 
\ 

euclidean distance between B' and D" then 

and 

whence 

h 2 = ( a -  b) 2 + (t - a) 2 

h a = ([3 - r )  2 + r 2 

2fir = (c~ - -  b) 2 + (t o - a)  2 + f12. 

This last expression enables us to find r.~(0). After some computation the final 
result simplifies to 

r(0) 2 
(3.12) too(O) = - 4  - -  

So 

On the other hand the chain rule gives that at cr = 0 

I ~,(uo, O)). (3.13) ~v..(0)=4rg (tp~,(Uo,0)+ Ro 

It remains to compute ~vu(u 0, 0). Using (3.9) and a formula of Epstein for the 
reflection, [El,  p. 123] we can write 

1 I +u  2 
(3.14) R(u) = ~ ( A ( u ) -  u) = . (1 + uZ)Q,- 2u 
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1 
Then ~p(u, 0)= ~(u, 0 ) -  log(l + u z) gives ~0, (u o, 0)= Ro- ~ and with (3.14) this leads to 

1 1 
~p~(u o,0)= 4r~ lp,,(0) R2. 

This together with (3.11) and (3.12) complete the proof of Lemma2. 
With this accomplished we return to the Beltrami coefficient # of the reflection 

A as given in (3.3). Lemma 2 and Eq.(3.14) used in the proof lead easily to the 
expression 

2 2  1 2 (1 + u  ) (Q,,u--~,,)+2u(1 +u2)~,,--2--2e 2Q~') 
(3.15) ~(u, 0) = (1 2 2  1 2 + u  ) (O,u--~-Qu)+2u(l+u2)Qu--2+2e 2Q{~) 

on the interval On~, .  As we know, I/~1 < 1 on O if and only if I/~(u, 0)1 < 1 on ~2c~lR, 
that is, if and only if 

(1 22 1 2 + u  ) (Q,~-~O~)+2u(l+u2)ou>2. 

The condition on Q leading to I#1 < t <  1 will come up in the proof of Theorem 1 
in the next section. Let us indicate briefly how the work in this section is applied 
there. A function f defined on the interval ( -  1, 1) and satisfying the hypothesis of 
Theorem 1 will be used to define a function ~ on the image of f, which we can 
assume is also ( - 1 ,  1). This ~ will be the support function for a curve F in 
 9 I 2 C FI 3. Geometrically, such a support function is defined just as for surfaces, 
but this time F is realized as the envelope of a family of horocycles H(x,  O(x))n~ 2 
in ~z .  

The formulas we have used, and have derived, for geometric quantities,/z, etc., 
are all local and hence Eq. (3.15) above actually gives a formula for the hyperbolic 
geodesic curvature of F in IH 2 in terms of its support function. The hypothesis of 
Theorem 1 will imply that F is complete and that its curvature is < t < 1. We then 
rotate F to produce a surface of revolution 2; in ~'I 3 of the type we have been 
discussing over a domain f2 C IE. The symmetric extension of ~ to f2 is the support 
function for 2;. We also then get a quasiconformal reflection A across 0f2 which will 
be used to extend f. 

4 Proof  of Theorem 1 

Suppose f is a C 3 function on ( -  1, 1) satisfying 

4t 4t 
(4.1) - 1 - ~  < ( 1 - x 2 ) 2 S f ( x ) <  l + t '  x c ( - l , 1 )  

for some 0 < t < 1. Since f ' +  0 we may assume that f ' >  0, and hence that f is 
increasing on ( -1 ,1 ) .  Using the invariance property of the Schwarzian, 
S(A o f ) =  S ( f )  for a M6bius transformation A, we can further normalize f to 
satisfy f(0) = 0, f '(0) = 1, f"(0) = 0. It follows from the work in [CO] that with this 
normalization f is subject to the sharp bounds 

1 ( l + x ) V a - ~ - ( 1 - x )  Vl-s  _ 
If(x)l < ~ (1 + x)Vr~+(1  - x )  v~ -~'  

4(1 - x2) v ~ -  1 
[f'(x)l < ((1 + x)  V1 - s  + (1 - -  X)VT-s) 2 '  
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where 2s=4t/(1 + t). [Actually, only the upper bound in (4.1) is needed for this.] 
One important consequence is that f is bounded. Without affecting either this or 
the order of f '  we may then further shift and scale to get that f ( -  1)= - 1 and 
f(1) = 1 ; this is just for convenience. 

-1  u Let h = f , = f (x) ,  x = h(u), and define ~ on ( - 1, 1) through the pullback by h 
of the "Poincar6 metric" of ( -  1, 1). That is, we define Q by the equation 

e 2Q'u, ( dx2 "] 
(1 + u2) ~ duz = h* \(1 - x2)2j ' 

or  

(4.2) e(u) = log(1 + u z) + log h ' (u)-  log(1 - h(u)Z). 

It then follows from the estimates above that 0 tends to + ~ as u ~  + 1. 
Computing #(u, 0) according to (3.15) and using 

S(h) (u) = - S f (x)h' (u) 2 , 

shows directly that the condition (4.1) and the bound lit(u, 0)1 < t < 1 are equivalent 
statements. Hence if (4.1) holds the envelope curve F C n-I2c ~-I 3 of the family of 
horocycles H(u, 0(u))c~lH 2, u ~ ( -  1, 1) has hyperbolic geodesic curvature bounded 
in absolute value by t < 1. Since 0 ( u ) ~  at the endpoints, F is complete and 
imbedded and the work of the previous section is applicable. Rotating F then gives 
a surface S C ~ 3  lying over a bounded, symmetric domain f2 C C, with 0S = 0f2, and 
a quasiconformal reflection A'  ~ across dr2, which is even in v, whose Beltrami 
coefficient p on s is bounded by t. The support function for S extends Q to f2 as an 
even function of v, and we continue to denote the extension by 0. 

We first extend f to a quasiconformal mapping f m a p p i n g  the unit disk onto O. 
Let f2 o denote the unit disk, and let S O denote the hemisphere in ~"I 3 o v e r  f2 o with 
OSo = dOo. Then X o can be recovered as the envelope of its tangent horospheres 
Ho(z, 0o(Z)), z c f2 0. Here, the support function Co is simply 

1 + Izl 2 
(4.3) eo(Z) = l o g  1 - Iz l  z "  

For zEf2o, let To(z) be the point on So where So is tangent to Ho(z, Qo(Z)). The 
mapping z ~ To(z ) is conformal. (Geometrically, this is essentially because X o is 
totally geodesic as a submanifold of hyperbolic space.) Longitudes on S o are 
semicircles rotated about the x-axis and latitudes are the orthogonal semicircles. 
Let F o denote the vertical longitude. 

For  the surface X lying over f2, the map z ~ T(z) of f2 onto X is (1 - t)- x_ 
quasiconformal. By this we mean that the ratio of the largest eigenvalue to the 
smallest eigenvalue of the derivative map is bounded above by (1 - t ) - ~  on f2. 
Again, this is a consequence of the calculations in [El ,  p. 119]. 

We define a map )" of 0 o onto 0 as follows. Starting with z c 0 o, the point To(z ) is 
on a longitude at some angle 0 c [ -  n/2, n/2] to the vertical. Rotate the longitude 
back to the vertical longitude Fo giving a point To(x), for some x ~ [ -  1, 1 ]. The 
image f ( x )  c [ -  1, 1] then determines a point T( f ( x ) )  on F, the vertical longitude of 
S. Rotate this longitude back through the same angle 0 giving a point T(~) on Z for 
some ~ ~ f2. The map f is the correspondence z ~-~ ~. f is smooth except perhaps at 
the two points where dO meets the real axis. From the remarks above on the maps 
To and T, to show that f is quasiconformal we must show that the intermediate 
map ~ : r o ~ S ,  To(z)~-~ T(~), is quasiconformal. 
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Write P = To(z), Q = T(~), and Q = ~(P). For  a point P ~ 2; 0 the eigenvectors of 
the derivative Dqg(P) are along the longitude and latitude through P. The 
eigenvalue corresponding to the latitudinal direction is simply l(Q)/lo(P ) where l(Q) 
and lo(P ) are the euclidean radii of the latitudes on 2; and So through Q and P 
respectively. Furthermore the eigenvalue in the longitudinal direction will be 
constant along the entire latitude through P, and therefore it suffices to compute it 
when P ~ F o. 

Let go be the euclidean metric and let g be the hyperbolic metric on IH 2 C ~3.  
For  P ~ Fo, Q = q)(P) ~ F write P = To(x ), x ~ ( - 1, 1) and Q = T(u), u = f (x)  ~ ( - 1, 1 ). 
Along ( - 1 ,  1) let g = eZ~'ldxl 2 with ~p(x) = - log(1  - x  2) and g2 = eZWldul 2 with ~v(u) 
=logh' (u)- log( l -h(u)2) ,  h = f  -~. Denoting norms of the differentials in the 
various metrics by I' Ioo, etc., we first have [E2, p. 23] 

(4.4) Idxlol = 21dPIo, Idulo2 = 2(1 - k(Q))IdQIo, 

Here, recall that k is the hyperbolic geodesic curvature of F. Also 

(4.5) Iduloo = f'(x)IdXloo  9 

Next, since P E F o, Q ~ F, the radii lo(P ) and l(Q) are the euclidean distances from P 
and Q to C, respectively. Therefore, for the hyperbolic metric 

1 l 
(4.6) IdPl, =/o~P3 IdPloo, IdQ.Io = / ( ~  IdQloo. 

Combining Eq. (4.4) through (4.6) now gives 

(4.7) [dQlgo 1 l(Q) 
IdPIoo = ( 1 - k ( Q ) ) -  lo(P)" 

This is the eigenvalue of D~(P) at P ~ Fo in the direction of Fo and hence along the 
entire latitude through P. Since Ik(Q)l < t < 1, taking the ratio of the eigenvalues in 
the two directions we conclude that the dilatation of  9 is at most (1 - t)- 1, (even 
on 270). 

Recall that the map f which extends f to be a mapping of Oo onto O is defined 
by f = T -  ~ o q~ o T o. It is therefore (1 - t)- 2-quasiconformal. To extend f to be a 
quasiconformal mapping of ~ we now define 

l + t  l + t  
Since A is a ~LTquasiconformal  reflection, E2(f) is a ( l _ ~ - q u a s i c o n f o r m a l  

mapping of ff~. It maps O 0 onto f2 showing that f2 is a quasidisk. 
The symmetry implies that E2 ( f )  preserves the upper and lower half-planes and 

hence E ~ ( f ) = E 2 ( f ) l ~  maps the real axis onto itself. It is a quasisymmetric 
extension of f, as discussed in Sect. 1. 

Next, we show how to extend E2(f)  to a quasiconformal mapping first of H 3 
and then by reflection to all of space. Recall that the quasiconformal reflection A 
across ~f2 = 62; pairs the endpoints ~ e f2 and A(~)~ ~ \ f2  of the geodesic in H 3 
which is normal to ~ at the point T(~). We consider the geodesic flow G ~, 

~ ( -  00, 00), G O = id, from ~. That  is, starting at P = T(ff) on S, G~(P) is the point on 
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the geodesic through (, P, and A(() that is a hyperbolic distance Izl from P; positive 
flows toward ( s ~ and negative z flows toward A(0 e r  This gives a family of 

parallel surfaces 2;~= G*(2;) foliating ~a .  This flow was studied by Epstein [E2, 
p. 18] in a more general setting, and for the surface of revolution 2; one 
consequence of his work is that the map G*:2;--~U is quasiconformal with 
dilatation 

e ~ + 1 e2~(1 - k2) + (1 + k2) 
K(G~)=maX { ea~(l_k2)+(l+k2) ' ea~+i }" 

As before, k 2 is the principal curvature of 2; in the longitudinal direction (k~--0) 
and since Ik2] < t < 1 we easily find that 

l + t  
K(G~)<-- (1-t)  ~ 

for all z. Moreover, for P e 2; it makes sense to form the limits ~ = lira G~(P), 
~'= lim G~(P), the limits taken along the geodesic, and ~'--A(0. ~ ~ 

We also form the geodesic flow G~ for the hemisphere X o lying over the unit disk 
Oo. In this case the maps G o . 2;o ~0 are all conformal. Again the parallel surfaces 
X~ folliate N3. 

We extend Ez(f):{I;--*l~, hence f, to ~ as follows. If P ~ I  a then PeUo for 
some z, hence Go ~ (P) e 2;o. Using the map q~: 2; o ~ 2; and G ~ : 2;--* U we simply set 

E3(f)(p) = [(G*oq~oGo*I(P), PeUo 
[E 2 ( f )  (n), P e 113. 

l + t  
As G~ is conformal, 45 is ( 1 -  t)-1-quasiconformal, G * is ~ - q u a s i c o n f o r m a l  

and preserves hyperbolic lengths in the direction of the flow, we conclude that 
l + t  

Ez(f)  is a ~ - q u a s i c o n f o r m a l  mapping of IH 3 extending Ez(f) .  By reflection 

E3(f)  extends to a quasiconformal mapping of lR 3 with the same dilatation. It 
maps the ball onto the solid bounded by 2; and its reflection in ~. 

Before continuing, we note again that the normalization on f and the 
consequent bounds allow us to construct directly the complete curve F, the 
complete surface 22, and the quasiconformal reflection A. Instead of normalizing in 
this way one could also consider dilates fs(x) = f(sx), s < 1, o f f  and apply a normal 
families argument to obtain a quasiconformal map which is used to extend f This 
is what Epstein does in the case of functions analytic in the disk. However, as be 
points out, in the general situation he considers, there is no guarantee a priori that 
the limiting surface will be complete. This means that the limiting quasiconformal 
map is not necessarily induced as a reflection in a complete surface. We prefer the 
approach here because one gets 2; without passing to a limit. It also shows that in 
this case the surfaces associated to the dilates f~ actually do converge to a complete 
surface. 

Next we need to show that the extensions are conformally natural with respect 
to appropriate M6bius transformations. That  is, i r a  is a M6bius transformation of 
IH 2, or  of ~ a  preserving ~2,  then Ej(A o f )  = A o Ej(f), j = 2, 3. Likewise, if A is a 
M6bius transformation of P, then E ~ (A o f )  = A o E l(f).  For convenience we refer 
to such M6bius transformations as admissible. 
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The reason why this property holds is that the curve F and the surface S, used to 
define the extensions, can themselves be obtained as the images of the semicircle F o 
and the hemisphere Z o under a family of admissible M6bius transformations. 
Indeed, we could have constructed the extensions in this way from the outset, but 
the geometry would not have been as clear. 

For the function f defined on ( - 1 , 1 )  let M(f,x)  be the "best M6bius 
approximation" to f at x. That is, M(f, x) is the M6bius transformations of R with 
M(f , x )= f (x ) ,  M ' ( f , x )=f ' ( x )  and M"(f ,x)=f"(x);  see [T]. If A is any M6bius 
transformation of R then M(A o f, x) = A o M(f, x). Such an A extends to a M6bius 
transformation of ~..~2 and then to a M6bius transformation of H 3 preserving ~"I 2 
in H3. [So does M(f, x).] We continue to denote all these extensions by the same 
letter. 

Recall that the semicircle Fo in ~r'I 2 o v e r  ( - 1, 1) is the envelope of the family of 
horocycles H(x, Go(X)) where the support function is 

Oo(X) = log((1 + x2)/(1 - x2)). 

Recall also that To(x ) is the point of tangency of F o and H(x, Go(X)). It is easy to 
check that if A is any M6bius transformation of IH 2 then A(H(x, Oo(X)) has 
horospheric radius 

O(x) = log(l + (Ax)  2) - log(1 - x 2 ) - l o g  [A'(x)l. 

In particular, if we take A = M(f, x), as a M6bius transformation of R-I 2, then with 
h = f -  l, u = Ax = f(x), we get 

O(u) = log(1 + u 2) + log h ' (u ) -  log(1 - h(u)2). 

This is precisely the support function defined in (4.2) for the curve F. That  is, the 
map To(x ) ~ m ( f  x)(To(x)) realizes F as the image of F o under the family of best 
M6bius approximations to f. Extending M(f, x) to be a M6bius transformation of 
H a also realizes Z as the corresponding image of So. Here the map is 
To(x ) ~ m(f ,  x) (To(z)), z ~ 0o, where To(z ) and To(x ) are on the same latitude on s 
(This is an alternative description of the mapping q~:Zo~Z used earlier in the 
proof of Theorem I). The same thing works for the 1-parameter family of surfaces 
Z~, U. 

From this it is easy to see that the extensions E~(f) are conformally natural. The 
extension E2(f)  is defined via the reflection A z in the surface Z generated by the 
curve F. Let A be an admissible M6bius transformation which maps the image o f f  
to a finite interval. Suppose that the extension E2(A o f )  is defined via the reflection 
A~, in the surface Z' generated by the curve F'. The relation 

M(ao f, x)To(x ) = A(M(f, x))To(x ) 

implies that F' = A(F) and hence that Z' = A(Z). Thus to extend A o f we reflect in 
Z' = A(Z). Furthermore, because A is a hyperbolic isometry we also have A z, o A 
=AoAx.  We conclude that E 2 ( A o f ) = A o E 2 ( f )  and a fo r t io r i  that El(A of )  
= A o El( f ) .  The relation E3(A o f )  = A o E3(f)  follows in a similar way. With some 
additional argument one can show directly that the conformal naturality holds for 
M6bius transformations A which map the image of f to an unbounded interval, 
but it is even easier to check this by simply shifting the construction to the circle, 
the disk, and the ball, as explained in the introduction. This completes the proof of 
Theorem 1. 
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5 Remarks 

First we note what happens in the extreme cases of t = 0, t - -  1 in 

4t 4t 
- 1-~ <(l-x2)Sf(x)< - - - l + t  

When t = 0  this reduces to Sf(x)=O and this implies that f is a M6bius 
transformation. As t ~  l the only condition is the upper bound (1 - x2) 2 Sf(x) ~ 2. If 
strict inequality holds here our calculations, together with the results of Epstein, 
apply to the extent that one can conclude that f has a conformally natural 
homeomorphic extension to IH 2 and N3. The constant cannot be improved, as 

shown by the function f(x)= log ] + x which has ( 1 -  x2)2Sf(x)-~-2. 
A 

I - -X 
Next, notice that there is an asymmetry in the upper and lower bounds. The 

theorem will apply, for example, if it is known that - m < - c < (1 - x2) 2 Sf(x) < O, 
so a negative Schwarzian appears to be a good feature if a quasiconformal 
extension is expected. The sign of the Schwarzian comes up in another  way which 
we think is interesting to point out. We have no further applications right now, so 
we will not include the relevant calculations. Using the notation of the previous 
sections, we can consider the conformal metric e2Wld~] 2 on the domain O, where 
~0(~) = O(~)-log(1 -1~12). In Epstein's terminology, lp is called the modified support 
function associated with the surface Z. This gives a complete metric of negative 
curvature on (2 which is comparable to the Poincar6 metric of t2. In fact, for the 
Gauss curvature K(p) of eZW]d~l 2 one can show that 

- 4  - 4  
- -  < K ( ~ )  < - -  
1 - t  = l + t '  

and that ~0P) tends to - 4 on aQ\{ - 1, 1 }. The curvature is - - 4 if and only if the 
function f is a M6bius transformation. On the interval - 1 < u < 1, we have 

f *  (e 2w du 2) = (1 - x2) 2 d x  2 , 

see (4.2). Here, the curvature can be expressed quite simply in terms of the 
Schwarzian of f as 

~c(~) (u) = - 4 + (1 - x2) 2 Sf(x), 

where u = f ( x ) .  Thus a negative Schwarzian means that f decreases curvature 
along ( -  1, 1). One can also get a fairly simple expression for K(~) at any point on Q 
in terms of the Schwarzian along ( -  1, 1), but we will not give it here. 

In principle there are many more functions satisfying the hypothesis of 
Theorem 1 then there are analytic functions in the disk satisfying the Ahlfors-Weill 
condition. For  example the function f on ( -  1, 1) with 

f ' ( x ) =  \ l _ x j  

satisfies the hypothesis of Theorem 1 if a e (0, 1) and e e (0, 1) is sufficiently small, 
but f has no analytic extension to the disk. 

Finally, the reader who is familiar with Epstein's work and with injectivity 
criteria for functions analytic in the disk may wonder if there is an analogue of 
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Theorem I with f"/f' replacing the Schwarzian. So do we. One can bring f"/f' 
alone into the picture by changing the support function 0 in (4.2)to 

~(u) = log(1 - u 2 ) -  log(1 - h(u)2), 

in earlier notation. This choice of ~ results from using h to pull back the metric 
f'dx/(1-x 2) rather than the metric dx/(1-x 2) as was done before. One can 
proceed as before, to a point, but trouble comes in showing that the extension ~ of 
f to the unit disk is quasiconformal. This doesn't arise in Epstein's work since the 
function is defined on the disk to begin with. Whether this is a defect in the way we 
construct the extension, or that something more subtle is going on we do not know. 
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